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This paper presents a review of the main concepts oftwistor theory. The emphasis 
is on the evolution of the subject from the original motivating ideas to the more 
recent work. In particular the physical and philosophical reasoning behind the 
use of the various mathematical structures is discussed. 

1. PRELIMINARY CONCEPTS 

Some of the most important  motivations behind twistor theory can be 
traced back to the study of spin networks (Penrose, 1971, 1972a). A spin 
network is a combinatorial  expression of  the quantum mechanical pro- 
cedures for combining nonrelativistic total angular momenta.  In particular 
it represents a collection of particles exchanging angular momentum 
between themselves. Having said that, it is of  course very difficult not to 
imagine these particles as being in some background space, but that would 
go completely against the philosophy of spin network theory, according to 
which the "background"  space is cons t r uc t ed  from the (purely com- 
binatorial) spin network itself. Indeed it can be shown that it is possible to 
use parts of  a network consistently to define the directions in Euclidean 
three-space corresponding to those particles with large angular momenta.  

This result, although it is only partial (being a nonrelativistic scheme 
which also excludes displacements between the particles), fits very well into 
the at tempt to question the validity of  the use of  two key mathematical  
concepts in theoretical physics. The first of  these concepts - -and  the one 
whose basic role in physics is most obviously challenged by twi~tor t heo ry - -  
is that of  the space-time point, and the second is the mathematical  con- 
tinuum. We are familiar with the elegance and power of  the use of  the 
space-time continuum in relativity theory (Penrose, 1968a) but its successes 
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should not prevent us from highlighting the physical irrelevance of some 
of its consequences (such as the fact that there are the same number  of  
"points"  in a volume of radius 10 -13 cm as there are in the entire universe). 
This is especially important  when we consider that the uncertainty principle 
together with mass energy equivalence prevents us from localizing a particle 
with arbitrary accuracy. Even if we were able to ignore quantum theory, 
however, it would still be unsatisfactory to use a mathematical  model whose 
foundations are so unphysical. According to this philosophy, then, the 
objective is to extend the spin network result to a fully relativistic scheme. 
In the sense that space-time points become derived objects this is what 
twistor theory does, although as we shall see the approach is quite different. 

Another area of research which was crucial in setting the scene for 
twistor theory was the study of zero rest mass fields and their conformal 
invariance (Penrose, 1965). It  became clear from this work and from the 
work on null hypersurface initial data done at more or less the same time 
(Penrose, 1980)--that not only was the two-component  spinor formalism 
very powerful, it was also a more natural setting for these ideas than the 
usual tensor calculus. Consequently it was not long before spinors came to 
be regarded as more basic objects than tensors. This can be expressed 
mathematically in the form of  the local isomorphism 

SL(2, C)~ O(1, 3) (1) 

Furthermore, the fact that spinors are null objects and the growing impor- 
tance of the use of  null hypersurfaces in general relativity led to the suspicion 
that the conformal group had an even more fundamental  part  to play in 
theoretical physics (Penrose, 1968b). Another significant aspect of (1) was 
that it indicated the value of  the use of  complex techniques. It was by no 
means the only instance of such a hint. It had for example been known for 
some time (Penrose, 1974) that the effect of a Lorentz transform on the 
celestial sphere of  an observer is simply a conformal transform on the sphere 
thought of  as a Riemann sphere. Secondly, the Kirchoff-type integral intro- 
duced in Penrose (1980) to evaluate a free field at any point in terms of 
the null datum for that field was reminiscent of  a Cauchy integral. Thirdly, 
there was a strong feeling that the Fourier analysis method of describing 
positive and negative frequency could and should be replaced by a structure 
whereby functions on a real hypersurface in a complex manifold can under 
certain circumstances be considered as boundary  values of  functions defined 
to one side (positive frequency) or the other (negative) of  the hypersurface. 

Probably the most influential results (so far as complex techniques are 
concerned), however, came from the search for exact solutions of  Einstein's 
equations. In the "impulsive wave" space-times (Robinson and Trautman, 
1962; Penrose, 1972a) coordinates could be chosen in such a way that 
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Einstein's vacuum equations were reduced to the condition that a function 
on the wave front be holomorphic (whether the wave front was planar or 
spherical). It could also be shown that the null hypersurfaces containing 
the impulsive wave had to be shear free, so that the planar and spherical 
cases were the only two possible examples of  pure impulsive gravitational 
waves. Furthermore both the real and imaginary parts of  these holomorphic 
functions were important,  which reinforced the conviction that complex 
geometry had a fundamental  (if somewhat obscure) role in relativity. This 
takes us back to our discussion of the use of  the mathematical  continuum 
in theoretical physics, where the two formalisms of general relativity and 
quantum theory are based on the real and complex fields, respectively. It 
would clearly be an advance to use the same (complex) field for both, not 
least because complex analysis has (as we shall see) features which suggest 
that we may yet be able to move toward some form of combinatorial 
description. 

At first sight it may seem that the obvious approach is to complexify 
Minkowski space. However, real Minkowski space is then nowhere near 
being a hypersurface in complexified Minkowski space (because it has four 
fewer dimensions instead of one), and it is therefore difficult to see how to 
incorporate the idea of representing positive and negative frequency in the 
terms mentioned earlier. Another more philosophical but no less significant 
objection to the complexification of Minkowski space is that such a tech- 
nique would be applicable whatever the dimension of space-time. Given 
that we believe that space-time has four dimensions it is far better to seek 
a more specific mathematical  structure which only works in four dimensions. 
Then a larger portion of the mathematical  model is likely to be of  direct 
physical relevance. This phi losophy--which  is a cornerstone of twistor 
theory-- is  also discernible behind the attempts to replace the space-time 
continuum altogether. 

So if complexified Minkowski space is not the structure we are looking 
for what is? We must bear in mind that any new (presumably complex) 
formalism should at least take account of  the following ideas: we would 
like to be able to think of space-time points as derived concepts, we expect 
conformally invariant objects to be important,  and we would like to have 
a description of positive and negative frequency in terms of boundary values 
of  complex functions. 

The details of  such a formalism were in part  suggested by the work on 
null geodesic shear-free congruences by Robinson, who showed (Robinson, 
1961) that given such a congruence a solution of Maxwell 's free field 
equations could be obtained. As we shall see in the next section the crucial 
point here is that these congruences can be regarded as "hal f  complexified" 
null lines. 
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2. EARLY TWlSTOR GEOMETRY 

Consider null geodesics in Minkowski space M. There are five (real) 
dimensions worth of them, because we can specify a null geodesic by (i) 
its intersection with some fixed spacelike hypersurface (three dimensions) 
and (ii) its direction along the null cone of that point of intersection (two 
dimensions). In other words the space of such null geodesics has five 
dimensions. The "fundamental  theorem" of twistor geometry is that if we 
include the "half  complexified" null geodesics (which we describe in detail 
in a moment) we obtain a complex manifold instead of merely a six- 
dimensional real manifold. This complex manifold is CP 3 (which is the 
space of four complex numbers up to an overall complex multiple) and we 
call it projective twistor space PT. The space of  real null geodesics which 
we started with forms a five real dimensional hypersurface PN in PT. 

The simplest description of these "half-complexified" null geodesics 
is in terms of complexified Minkowski space CM. There are two types of 
totally null complex 2-planes in CM, called a planes and/3 planes. An a 
plane is defined by solutions to the equation 

Z A A ' =  z A A " ~  - }[ATj'A" (2) 

where Zo AA' and zr A' are fixed and A A varies. The space of a planes in CM 
is exactly PT, and the correspondence between the two is summarized by 

09 A : i z A A ' ~T  A ' (3) 

To see this correspondence note that th e pair (~o A, ~a') (up to a complex 
multiple) defines a point in PT. If  we fix that point then the solutions z ma' 
of (3) are given by (2). If  X a a "  is a real space-time point then the projective 
twistor 

( i x A a ' q r  A ,, TI'A, ) (4) 

defines a real null geodesic (lying in the corresponding a plane) through 
X A A '  in the direction ~rATr A'. 

One of  the motivations behind twistor theory was that the concept of 
a space-time point should be derived, not primary. So the next task is to 
see how space-time points are represented in projective twistor space. We 
return to equation (3) but this time fix the (real or complex) space-time 
p o i n t  z A A '  and instead solve the equation for O) A and 7rA,. The solutions 
form a one complex dimensional projective space CP ~ (which we refer to 
as a line even though it has topology S 2) in PT. If  the line lies in the 
hypersurface PN then the corresponding point is real. So points in PT 
represent a planes in CM and lines in PT represent points in CM. To 
complete the picture we must explain that planes in PT (in other words 
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elements of  PT*) represent/3 planes in CM, where a/3 plane is defined by 
solutions of  (2) where z AA' and ;t A are fixed and 7r A' varies. We can see 
from (4) that a real null geodesic lies in exactly one a plane. It also lies in 
a unique/3 plane, so that a properly complexified null geodesic corresponds 
to an oz plane and a /3 plane. This is why we referred to at planes as 
"half-complexified" null geodesics. 

There are a couple more aspects of the geometry of  twistor space we 
should discuss before moving on to some of the early results in the theory. 
Firstly, as can quite easily be seen from (3) two lines in PT intersect if and 
only if their corresponding points in CM are null separated. Secondly, the 
hypersurface PN in PT is defined in twistor terms by the Hermitian form 
(written in terms of nonprojective twistors) 

ZVt,Zot = o.) A ~ 'A "~ "7'l'A'(f-) A'  (5) 

where Z ~ = (w A, 7rA,). We have 

Z = {pZC': p ~ O~ C)~  PNC::> Z'~Z~, =O 

For a more detailed discussion of  basic twistor geometry we refer to 
Penrose and Ward (1980). We shall be content with the following summary 
of  the relationship between space-time and projective twistor space: 

PT CM 

point at plane 
line point 

plane /3 plane 
intersection of  lines null separation of  points 

line in PN real point 

Even at this early stage we are in a position to look back at some of 
the ideas leading up to twistor space to see what has happened to them. 
To begin with, the group of transformations of projective twistor space 
leaving the Hermitian form (5) invariant is SU(2, 2). This group is not 
compact and therefore has infinite-dimensional irreducible representations. 
So we do not expect any direct analogy with spin networks (where the 
underlying group was compact). On the other hand some of these infinite- 
dimensional representations (the zero rest mass free fields) will turn out to 
be very interesting. Also, we have the local isomorphism 

SU(2, 2)-> C(1, 3) (6) 

which shows that, as expected, conformal invariance is fundamental to 
twistor theory. This is not surprising, of course, given that we constructed 
twistor space from null objects. Indeed it is only by singling out these null 
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objects that we have been able to obtain the complex structure of  twistor 
space. Furthermore, the usual way of thinking of a quantized space-time is 
to leave the points intact but quantize the metric. This leads to well-defined 
points and fuzzy null cones, which according to the twistor philosophy is 
exactly the wrong way around. If, instead, we quantize in twistor space we 
can expect to have well-defined null directions and fuzzy points. In particular 
spinors would survive, as indeed they should if the belief (expressed earlier) 
in their importance for the structure of  space-time is to have any validity. 
This inversion of the usual roles played by space-time points and null 
directions is at the core of  twistor theory and its power, which lies in the 
fact that it provides us with a new viewpoint, can be seen in all the subsequent 
work in the theory. 

The first actual theorem expressed in twistor geometry was the Kerr 
theorem, which states that all shear-free congruences of  null geodesics are 
given by the elements of  sets of  the form P N n Q ,  where Q is some 
holomorphic surface in PT (Penrose, 1967). This theorem was at the same 
time encouraging and slightly worrying. It was encouraging because it 
demonstrated that a key aspect of curvature had been represented as a 
holomorphic condition in twistor space. It was worrying because when a 
shear-free congruence of  null godesics goes through a region where the 
space-time is conformally curved (Cabcd ~ 0) the Sachs equations imply that 
it picks up some shear. Therefore conformal curvature seems to destroy the 
complex structure of  twistor space. We will return to this problem later. 

The next task which twistor geometry was asked to perform was the 
description of  free zero rest mass fields. As we have seen, the study of these 
fields provided some of the original ideas for twistor geometry and yet at 
first glance their description in twistor space is a little daunting because a 
function on space-time is a function of lines in PT. A hint, however, was 
provided by the fact that a zero rest mass field is determined by its initial 
data, which is a function of three variables. In conjunction with the guiding 
philosophy that we should be looking for holomorphic structures this suggests 
that we consider holomorphic functions on regions in PT. (A function Which 
is holomorphic all over PT has to be constant.) To get from such a holomor- 
phic function to a zero rest mass field we first of  all suppose that we wish 
to evaluate the field at the space-time point X AA'. Then we restrict the 
function on PT to the line representing X AA',  and recall that this line is 
actually a CP ~, which is topologically an S 2. I f  the region where the function 
is not holomorphic (called its singularity region) is such that it intersects 
the line x AA' in two disjoint patches then we can integrate the function 
along any contour separating these patches to obtain the value of the field 
at X AA' (see Figure 1). There will be lines for which these two patches have 
moved together, pinching the contour. These lines correspond to points in 
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CM at which the field blows up. The importance of this procedure lies in 
the fact that the condition that the twistor function is holomorphic (in other 
words the Cauchy-Riemann equations) is necessary and sufficient for the 
corresponding field to satisfy the zero rest mass equations (Penrose, 1968b). 
While this result was undoubtedly a major step forward some difficulties 
remained. Firstly, it did not provide as neat a characterization of positive 
and negative frequency as had been hoped: a line lying completely in the 
upper half PT § of PT corresponds to a point lying in the future tube CM § 
of CM. If  the field is finite for all such lines then it has positive frequency. 
In other words if the singular region of the twistor function intersects all 
lines lying in PT + in two disjoint patches then the corresponding field has 
positive frequency. Secondly, neither the twistor function nor the contour 
over which it is integrated are uniquely defined by the space-time field. This 
is because the integral is a Cauchy integral, and it has the unfortunate 
consequence that the collection of functions and contours corresponding 
to a single space-time field is rather ill defined. 

Meanwhile twistor theory was still faced with the problem that the 
shear of a congruence of  null geodesics is not in general preserved as one 
moves along the geodesics so that the complex structure of PT would not 
be expected to survive in a conformally curved space-time. One way out of 
this dilemma was suggested by the study of H spaces (Ko et al., 1979), 
which led to the concept of  asymptotic twistor space, which is a twistor 
space defined relative to the null hypersurface 5~ at infinity. This idea in 
turn developed into the theory of hypersurface twistors. Suppose S is a 
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spacelike hypersurface in Minkowski space. Then we could have constructed 
PT by taking the space of  intersections of  a planes in CM with CS (the 
complexified hypersurface). In a general space-time ~ / a  surfaces will not 
exist, but we can still construct the space of  "intersections" by considering 
complex curves in CS (satisfying certain conditions) to obtain a complex 
manifold PJ ' (S)  called projective hypersurface twistor space. The so far 
slightly obscure relationship between curvature and complex structure could 
then be clarified a little by the "hypersurface Kerr theorem." This states 
that a congruence of null geodesics in JA is shear free at S if and only if 
it corresponds to some intersection PN(S)  n Q where Q is a holomorphic 
surface in P3-(S). So if S and S' are two hypersurfaces separated by a 
conformally curved region then P3-(S) and P3-(S') must have different 
complex structures. The detailed description of these structures, however, 
had to await further developments. 

3. RECENT TWlSTOR THEORY 

Another important idea coming from the study of H spaces was that 
a complex space-time could be conformally right flat (Penrose, 1976), which 
means that the conformal curvature is 

Cobc~ = CABCDA'B'C'D' 

The importance of such a space-time lies in the fact that a surfaces still 
exist, so that presumably the space of these o~ surfaces is a twistor space 
P J- whose complex structure has been deformed away from flat twistor 
space PT, The next problem was to construct a space-time from a given 
deformed twistor space. In the flat case the points of  space-time were the 
CP~s in PT, and these CP~s could be characterized by being compact 
holomorphic curves having the correct homology. It was by no means 
immediately clear that a four-parameter family of  such curves existed in 
p~r, and the proof  of this fact involved (among other things) a sheaf 
cohomological calculation. (We shall see in a moment that sheaf 
cohomology was soon to be introduced in another part of twistor theory.) 
This four-parameter family provided the points of a space-time and what 
was more it could also be proved that a space-time constructed in such a 

way was automatically conformally right flat, and that every conformally 
right flat space-time could be so obtained. In fact it was the conformal 
structure of  the space-time which was obtained first. The metric, which 
followed soon after, needed a deformation of  nonprojective twistor space 
considered as a bundle over the ~'A,-spinor space, and was called the 
nonlinear graviton metric (Penrose, 1976). These startling results take us 
back to the original motivation for using the complex field in relativity, 
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because we can now see in what sense complex analysis has "finite" or 
"rigid" features reminiscent of a combinatorial description. It was the 
requirement that the compact curves in P f f  be holomorphic which had th e  

effect of singling out the finite-dimensional system of space-time points. If 
we had merely been looking at differentiable real curves we woui~ never 
have been able to define anything other than an infinite-dimensional system. 

In the last section we indicated the problems with the contour integral 
method of  generating zero rest mass fields. In particular, a whole collection 
of  twistor functions and contours was seen to correspond to one space-time 
field. This freedom in the choice of twistor functions and contours was 
found to correspond exactly to the freedom in choosing a representative 
cocycle for a sheaf cohomology class (Eastwood et al., 1981). In other words 
one space-time field corresponds to one sheaf cohomology class, so that 
we have (for example) the isomorphism 

{holomorphic solutions of vAXOA,.../: = 0, where IliA,... L, 

is symmetric in its n indices and defined on CM § 
---- Hl~(pT§ O ( -  n - 2 ) )  (7) 

Not only does (7) solve the problem of the accurate formulation of  the 
collection of  functions and contours corresponding to a given space-time 
field, it also provides the simple characterization of  positive and negative 
frequency which had been sought. Indeed, the increasing use of  cohomology 
theory has simplified and suggested new ideas in several areas of twistor 
theory. 

One such area is the study of the "twisted photon" (Ward, 1977) in 
which anti-self-dual Maxwell fields can be described as a certain type of 
line bundle over PT. If  vector bundles over PT are taken instead of line 
bundles then (so long as the vector bundles are trivial when restricted to 
CPIs) solutions of the Yang-Mills equations are automatically generated. 
While this is another example of  solutions of  a differential equation in 
space-time being provided by holomorphic structures in twistor space it has 
in common with all the others the property that the differential equation is 
either self-dual or anti-self-dual. The major challenge for twistor theory is 
to discover how to solve Einstein's vacuum equations by first constructing 
a left-fiat space-time in terms of PT and then somehow putting the two 
halves of  the conformal curvature together. The work in progress on the 
first part of  this program is in attempting to dualize the ordinary twistor 
description of  a space-time point (Penrose, 1981). This is by no means the 
only current investigation in twistor theory, however. The theory as a whole 
is extremely rich and very effective at suggesting new directions for research 
(Hughston and Ward, 1979). We have been content here to concentrate on 
the development of the main lines of thought. 
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A C K N O W L E D G M E N T  

I f  I h a v e  b e e n  succes s fu l  in wr i t ing  an  u n d i s t o r t e d  d i s c u s s i o n  o f  s o m e  

o f  the  ideas  in tw i s to r  t h e o r y  t h e n  m y  d e b t  to R o g e r  P e n r o s e  fo r  i n t r o d u c i n g  

m e  to s u c h  a b e a u t i f u l  d i s c ip l i ne  wil l  be  c lea r  t h r o u g h o u t  the  pape r .  I f  not ,  

t h e n  the  r e s p o n s i b i l i t y  is o f  c o u r s e  mine .  
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